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The notion of a meander is introduced and studied. Roughly speaking, a meander is a 
sequence of integers (drawn from the set N= {I, 2, . . . . n}) that wanders back and forth 
between various subsets of N a lot. Using Ramsey theoretic proof techniques we obtain sharp 
lower bounds on the minimum length of meanders that achieve various levels of wandering. 
We then apply these bounds to improve existing lower bounds on the length of constant width 
branching programs for various symmetric functions. In particular, an Q (n log n) lower bound 
on the length of any such program for the majority function of n bits is proved. We further 
obtain optimal time-space’ trade-offs for certain input oblivious branching programs and 
establish sharp lower bounds on the size of weak superconcentrators of depth 2. 0 1988 

Academic Press, Inc. 

1. MEANDERS 

For a sequence of length m A4 = x,x2 . . . x, of integers xi E { 1,2, . . . . n} = N and 
for two disjoint sets S, Tz N we say that an interval xixi+ 1, . . . . x~+~ of A4 is a link 
between S and T if x~+~, . . . . x~+~-~#SUT and ~ES,X,+,ET or x~ET,x~+~ES. 
Note that any x, # S u T in A4 belongs to at most one link between S and T. We 
say that M is a meander if for any two disjoint sets S, T, c { 1, 2, . . . . n) with 
1 S( = ) TJ there are in A4 at least 1 SI links between S and T. More generally, for 
any function g : N + R + we call a sequence ME (1, . . . . n}* a g-meander over 
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{ 1, ***, n} if for any two disjoint sets S, Tc { 1, . . . . n} with ) SI = ) TJ there are in A4 
at least g() Sl) links between S and T. Let L,(n) denote the minimum possible 
length of a g-meander over { 1, . . . . n}. Note that a g-meander for g(x) =x is just a 
meander. 

One can easily check that for every nondecreasing function g: N-r R+, g(n/2) < 
L,(n) < rig(n). The lower bound follows from the fact that there are at least g(n/2) 
links in any g-meander between ( 1, . . . . n/2} and {n/2 + 1, . . . . n>. The upper bound is 
a consequence of the fact that a concatenation of g(n) copies of 1, 2, 3, . . . . n 
is a g-meander of length rig(n). Since, obviously, if g(x) <g(x) for all x then 
L,(n) <&(n) for all n, we conclude that L,(n) = o(n .log n) if g(x) = o(log x) and 
L,(n) = w(n .log n) if g(x) = w(x .log x). In this section we prove the somewhat 
surprising result that L,(n) = Q(n . log n) for all functions g in between, i.e., for all 
functions g such that .Q(log x) <g(x) < 0(x log x) for all x. 

In applications one often encounters sequences ME { 1, ..,, n}* which satisfy the 
link property of a g-meander only for sets S, T, G { 1, . . . . B} with S G { 1, . . . . n/2} and 
T E (n/2 ,f, . . . . n}. We call a sequence A4 with this slightly weaker property a 
g-bipartite-meander. 

Moreover, we will need a lower bound for the length of sequences that have an 
even weaker link property, namely sequences that satisfy the link property only for 
sets Sc (1, . . . . n/2} and Tc {n/2 + 1, . . . . n} of one fixed size. The following theorem 
supplies such a bound. 

THEOREM 1.1. Let M be a sequence of length m over N = { 1,2, . . . . n}. Let s be a 
positive real number and suppose that there is some positive integer 1 that satisfies 
I< n/2” such that for any two sets of cardinality 1 SE (1,2, . . . . nJ2) and 
Tc {n/2 + 1, . . . . n> there are in M at least s links between S and T. Then 
m > l/&t (s - 9). 

In order to prove Theorem 1.1 we need a Ramsey-theoretic lemma. Let 
x=x1, . ..) x, be a sequence of elements of N. For an ordered pair (a, b) of distinct 
elements of N we define the order type vector v,(a, b) to be the binary vector 
obtained from X by replacing each occurrence of a by 0 and each occurrence of b 
by 1, and by omitting all other numbers in X. 

LEMMA 1.2. Let X=x1, . . . . x, be a sequence in which each a E N appears precisely 
k times (r = n . k), and suppose N = N, v N2 is a partition of N into two disjoint non- 
empty sets. Then there are two subsets SC N,, TG N,, (SI > 1 N, (/22k-1 and ( T( > 
( N2 1/22k- ‘, such that the set of all the order type vectors {v,(s, t): s E S, t E T} con- 
tains only one element. 

Lemma 1.2 is proved in the next section. We now show how it implies 
Theorem 1.1 

Proof of Theorem 1.1. Put f = rm/nl. If 8f + 12s then m >, 1/8n(s-9), as 
needed. Hence we may assume 8f + 1~ s. Let L be the set of numbers in ( 1, ..,, n/2) 
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which occur at most 4f times in M, and let U be the set of numbers in 
{n/2 + 1, . . . . a} which occur at most 4f times in M. Clearly 1 L ) 2 n/4 and 1 Ii 1 > n/4. 
Let Y be the subsequence of A4 consisting of all occurrences of numbers from L u U 
in M and let X be a sequence obtained from Y by adding to it at the end, if 
necessary, elements from L u U so that each number in L u U occurs precisely 4f 
times in X. Define k = 4J Since (n/4)/22k-’ = n/2’*+ ’ 2 n/2” > I we can apply 
Lemma 1.2 and conclude that there are sets SC L, Tc U, with ( SJ = I TJ = I such 
that all the order type vectors { ~(a, b)( a E S and b E T} are identical. One can easily 
check that the number of links between S and T in X is at most as large as the 
number of alternations between 0 and 1 in this common order type vector. 
Therefore it is bounded above by 8f (= the length of this order type vector). Hence, 
the number of links between S and T in A4 is at most 8f<s, contradicting the 
hypothesis of the theorem. Thus m > 1/8n(s - 9), as needed. 1 

COROLLARY 1.3. For any function g from N to R + the minimum length L,(n) of 
any g-meander over ( 1, 2, . . . . n} satisfies 

In particular, L,(n) is superlinear in n if g(x) -+ co and L,(n) =O(n log n) if 
g(x) 2 Q (log x). The same lower bounds hold for the length of g-bipartite meanders, 
as well. 

Proof We prove the bound for g-bipartite meandes. (The proof for g-meanders 
is analogous.) Let m be the length of such a meander. Define s = 8m/n + 10 and 
I= Ln/2”J. If g(l) 2 s then, by Theorem 1.1, m 2 1/8n(s - 9) > m, which is 
impossible. Hence s > g(l), i.e., m > n/8 (g(1) - 10) = n/8 (g(Ln/2*“‘“- lo J) - 10). 
This completes the proof. l 

Using probabilistic arguments, we next prove the following result, which shows 
that Corollary 1.3 is sharp for every function g(x) that satisfies Sz (log x) <g(x) d 
0 (x log x). For each such g the lower bound given by Corollary 1.3 for the length 
of the coresponding meander is Sz (n log n). 

THEOREM 1.4. For every n there is an Q (x . log x)-meander M, of length 
0 (n . log n). In fact, for sufficiently large n, almost all sequences containing 
3 . rlog nl occurrences of each iE { 1, . . . . n } are g-meanders for g(x) = 1/7x . log n 
(and hence also for g(x) = 1/7x. log x). 

Proof Define a function g(x) = 1/7x. log n and let A4 be a random sequence in 
which each iE { 1, 2, . . . . n} = N occurs 3. rlog nl times. We show that the 
probability that A4 is a g(x)-meander tends to 1 as n tends to infinity. For simplicity 
we omit all the ceilings and floors. 

Fix a number s, 1 <s <n/2 and fix two arbitrary disjoint sets S, TEN with 
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) S( = ( T( = s. An easy combinatorial argument shows that the probability that M 
has exactly 2j + 1 links between S and T is precisely 

This is because the links between S and T depend only on the occurrences of 
elements from SW Tin M. Hence, the above probability is just the probability that 
a random binary sequence of 3s log n O’s and 3s log n l’s will have j + 1 blocks of O’s 
and j+ 1 blocks of 1’s. The denominator of the last expression counts the total 
number of binary sequences consisting of 3s log n O’s and 1’s. The numerator counts 
the number of such sequences with j+ 1 blocks of O’s andj+ 1 blocks of 1’s. (There 
are ( 3s’05n-‘) ways to split the 3s log n O’s into j+ 1 nonempty blocks, (3S’05n- *) 
ways to split the l’s, and 2 ways to decide if the first block is a block of O’s 
or of 1’s.) A similar expression for the probability of 2j links can be given. By a 
standard estimate (;) d (eu/b)b for all a, b and hence for every i<g(s)/2 (3s’pgn) < 
(3;$Tz2) < (42e)g’“)‘Z. Thus the probability that there are less than g(s) links between 
S and T can be bounded by 

2 .g(s) . (42e)g(S) 
n3s -. 

(Here we used the trivial estimate (‘$ ;oOgg;) > n3S.) Therefore, the probability that 
there are two disjoint S, T c N with ) S 1 = 1 Tj 6 n/2 and with less than g() Sl ) links 
between them is bounded by 

which tends to 0 as n tends to infinity. 1 

2. THE PROOF OF THE RAMSEY THEORETIC LEMMA 

In this section we prove Lemma 1.2 stated in the previous section. For 1 <p < k, 
1 < q 6 k, and an ordered pair (a, b) of distinct elements of N, let u(P~~) (a, 6) be the 
subsequence of ~,(a, 6) consisting of the initial p zeros and initial q ones in ~,(a, b). 
Thus u(~*~) (a, b) is the order type vector of (a, b) in the sequence obtained from x 
by omitting every occurrence of a besides the first p, and every occurrence of b 
besides the first q. 

We claim that there are two sets St2) E N,, T’2) s N,, with 1 S(2)J > IN, l/2, 
I p2)I 2 I N2 (/2 such that all the vectors in the collection {P)(s, t): s E St2), 
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t E T”‘} are identical and are either all the vector 01 or all the vector 10. This is 
because either there are half of the elements of N, whose first occurrence precedes 
that of half of those of NZ, or vice versa. 

Suppose now (by induction on p+ q), that p, q are some numbers satisfying 
1 Gp, q <k and that we have already defined two subsets ScP fy’ c N, and 
T”‘+4’ c Nz satisfying 1 SPcyl 2 1 N, (/2Pfy-‘, 1 T(Pcy’l 2 1 N2 l/2p+y~ I, such that 
all vectors in the collection { ~(~3 q’(s, t): s E S(p+y’, t E PP +q’) are identical and 
their last two coordinates are distinct. Assume, without loss of generality, that each 
such u(~,~‘( s, c en ) d s with a 1. If p = k, we are done, since for each s E ScP +4’, 
tE T(P+4’, u,(s, t) is just u(~,~’ (s, t) followed by k-q 1’s. If p < k we claim that there 
are two sets S(P+~+~‘GS(J’+~’ and T(P+~+~‘ET(P+~’ satisfying IS(p+‘J+“J > 
JS(p+y’l/2 and ) 7” P+Y+l’J > 1 p+4’//2 such that all the vectors in the collection 
(0 (p+l,qs, t):seS (p+4+l’ 9 IE p+Y+l) } are identical, and their last two coor- 
dinates are distinct. 

Indeed, put I= {i:x, is the (p+l)th occurrence of some SES@+~‘} and 
J= (j: xj is the qth occurrence of some TV Tcpfq’}. Clearly 11) = I S(P+4’( and 
(JI = ) Fp+y’ I. Let T be the rlZ)/2]- smallest number in I and let J be the 
(r/4/2]+ 1)-smallest number in J. If t<J, then we define S(p+q+“= {sE:S(~+~‘: 
the (p+ l)th-occurrence of s in X is not after x,}, and Ppfq+“= {TV T(p+yJ: the 
qth occurrence of t in X is not before xi). Clearly, in this case, for every 
SE=$‘+Y+l’ and fET(P+Y+I’, ucp+ ‘,4’(s, t) is equal to the vector obtained from 
u(~.~‘(s, t) by replacing its last coordinate (which is 1) by 01. If t>J we define, 
similarly, Sp + y + ” = {s E S (p+ y’. the (p + 1) th occurrence of s in X is not before 
xi} and 71p+y+1’= {TV T’ P + 4’. the qth occurrence of t in X is not after xi}. In this 
case, for every sES(P+Y+“, and TV Pp+y+“, u(~+‘,~’ (s, t) is r~(~~~‘(s, t) followed by 
a zero. In both cases IS(p+4+“l z )SPf4’l/2. I 7’(pf4+1’l 3 ( T(Pf4’l/2, all the 
vectors in the collection (u(~+‘,~‘(s, t): SE S(pfqfl’, TV T(p+4+“) are identical and 
their last two coordinates are distinct. This proves the claim and completes the 
proof of Lemma 1.2. 1 

Remark 2.1. The assertion of Lemma 1.2 is a Ramsey-theoretic result. It is 
possible to use some known Ramsey-type results to obtain weaker versions of it. 
Indeed by considering the complete graph on the elements of N in which the edge 
(a, b) for a <b is colored by u,(a, b), one can prove some weak version of 
Lemma 1.2 by applying the standard Ramsey theorem for graphs (see, e.g., [S]). A 
somewhat better result can be proved using the known results about the problem of 
Zarankiewicz (see [S]). Using these, we can obtain the assertion of Lemma 1.2 for 
S, T of size sZ(log n/2k) (if ) N, ) = ) N, 1 = n). Both results are considerably weaker 
than the one proved above. 

Remark 2.2. Lemma 1.2 is not far from being the best possible. For every k and 
n, we can construct a sequence X, satisfying the hypothesis of the lemma, in which 
there are no two disjoint sets S, T of size bigger than rn/2k’2] that satisfy the 
assertion of the lemma. Indeed, put I= k/2. For each 1 Q i < 1 let Nio(Ni,) be the 
sequence of all elements of N= (0, 1, . . . . n - 1 } whose ith least significant bit is 
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0 (1, respectively), ordered in an increasing order. Let X be the concatenation 
of the following 21 permutations of N: (Nx,Nil) for i= 1, . . . . I and (N,,N,) for 
i = 1, . ..) 1. For example, if N = (0, 1,2, 3,4, 5,6,7} and k = 2 we take 
X=0, 2,4, 6, 1, 3, 5, 7, 1, 3, 5, 7,0, 2,4, 6. 

We claim that if S c N and there is even a single t E N - S such that all vectors 
{uX(s, t) : s E S} are identical, then 1 SI < rn/2’] = rn/2k’2]. Indeed, otherwise, there 
are sO, si E S which differ in the ith coordinate for some 1 < i < I and one can easily 
check that uX(sO, t) # uX(sI, t). 

3. WEAK SUPERCONCENTRATORS OF DEPTH 2 

We show in this section that the lower bound on the length of g-meanders 
(Corollary 1.3) implies corresponding lower bounds on the size ( = number of 
edges) of superconcentrators of depth 2. Moreover, the same bounds hold for the 
size of networks with weaker connectivity properties which we call weak supercon- 
centrators. 

An n-network is an acyclic directed graph with n distinguished vetices called 
inputs and n other distinguished vertices called outputs. For any function 
g: N + R- we call an n-network C, a g-superconcentrator of depth 2 if 

(i) each path from an input to an output has length 2, and 
(ii) for any set S of inputs and any set T of outputs with 1 S 1 = I TI there are 

at least g( I S I ) vertex-disjoint paths from S to T. 

A superconcentrator of depth 2 is the special case of a g-superconcentrator of 
depth 2, where g(x) = x (see [ 111). It is thus reasonable to refer to each g-super- 
concentrator with g(x) = o(x) as a weak superconcentrator. 

Pippenger [ 1 l] showed that every superconcentrator of depth 2 has f2(n. log n) 
edges. Our lower bound for the length of g-meanders enables us to strengthen this 
and show that every log x-superconcentrator of depth 2 has SZ(n -log n) edges. This 
lower bound is optimal (simply take log n interior vertices, each adjacent to all 
inputs and all outputs). 

Apparently for g(x) = o(x) no lower bound on the size of g-superconcentrators of 
depth 2 was previously available (a trivial upper bound is O(n .g(n)) as above). 

The following lemma is due to Pippenger. 

LEMMA 3.1. Let g: N + R+ be arbitrary and let G be a g-superconcentrator of 
depth 2 with n inputs, n outputs, and e edges. Then there is a g-meander M over 
{ 1, .“, n) with length (M) = e. 

Proof: Identify both the inputs and the outputs of G with the set { 1, . . . . n}. For 
any interior vertex v of G let 1, c ( 1, . . . . n} be the set of inputs adjacent to u and let 
0” c { 1, . ..) n} be the set of outputs adjacent to u. Let K, E ( 1, . . . . n} * consist of all 
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numbers in I, (in any order) followed by all numbers in 0,, (in any order). Define 
M as the concatenation of these sequences K, for all interior vertices u in G. Clearly 
length (M) = e. We claim that M is a g-meander over N = (1,2, . . . . n}. Indeed, let 
S, T be two disjoint subsets of N, I SI = I TI Since G is a g-superconcentrator it 
contains r = g( 1 SI ) vertex-disjoint paths from S to T. Let oi, u2, . . . . v, be the interior 
vertices of these paths. Clearly each K, contains a link between S and T for each 
1 d i < r. Hence M is a g-meander, as claimed. 1 

COROLLARY 3.2. If Vx(g(x) 2 log x) then any g-superconcentrator of depth 2 
with n inputs and n outputs has s2(n .log n) edges. Moreover, for any function g with 
g(x) + CC the minimum size of g-superconcentrators of depth 2 with n inputs and n 
outputs is superlinear in n. 

Proof: This follows immediately from Corollary 1.3 and Lemma 3.1. 1 

4. LOWER BOUNDS FOR BRANCHING PRWRAMS 

A branching program that computes a Boolean function f of n Boolean variables 
XI 9 ..-, x, is a model of computation that generalizes decision trees. The program is 
a directed acyclic graph, with a special vertex S, that has no ingoing edges, and 
some other special vertices (sinks), that have no outgoing edges. All non-sink 
vertices are labeled by an input variable and all sinks are labeled 0 or 1. Every 
non-sink vertex has fan-out two, and the two edges leaving it are labeled 0 or 1. 
Each assignment of values bi to the input variables defines a unique computation 
path from S to one of the sinks, which starts at S, and leaves every non-sink vertex 
labeled xi through the edge labeled bi. The program computes f iff (b,, . . . . 6,) is the 
label of the end-vertex of this path, for each possible b,, . . . . 6,. 

A generalization of this type of branching program is the R-way model, 
introduced by Borodin and Cook in [6]. Here we compute a function f of n 
variables x,, . . . . x,, each being a number between 0 and R - 1. Each non-sink 
vertex is now labeled by one of the xis and has R outgoing edges labeled by 
0, 1, . ..) R - 1. The program branches in this vertex according to the value of xi. 

It is customary to assume, (and for most purposes this can be done without loss 
of generality although with some loss of power), that each vertex has a level, where 
the level of S is 1, and edges go from each level only to the next one. The width of 
the program is the maximum number of vertices on a level, and its logarithm 
corresponds to the space of the computation. The length is the number of levels, 
and it corresponds to the time of the computation. The size is the total number of 
vertices in the program. 

Branching programs describe a general sequential model of computation when 
we identify the vertices in each level with all the possible internal states of the com- 
putational device. It is desirable to find functions (in P) that cannot be computed 
simultaneously in linear time and logarithmic space in such a general model, i.e., 
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that do not have linear length and polynomial width branching programs. One of 
the main problems raised by Borodin and Cook, [6], who proved a time-space 
trade-off for sorting in the R-way model, is to obtain such a result for a one output 
bit function in P. Here we obtain such a result for input oblivious branching 
programs. 

A program is input oblioious if all non-sink vertices in each level have the same 
label. Obviously any function of the considered type can be computed by an R-way 
input oblivious branching program of length n. Also notice that every program can 
be made input oblivious by increasing its length by a factor of its width. In par- 
ticular, every branching program of bounded width can be assumed to be input 
oblivious (unless constant factors are important). Input oblivious branching 
programs also arise if one pebbles arbitrary computation graphs for a problem (see 
Remark 4.4). 

One can easily show that almost all Boolean functions cannot be computed by a 
branching program of subexponential size. It is much more difficult to find 
functions in P (or in NP) that require nonlinear size. Nechiporuk [lo] (see also 
[ 131) proved an B(n2/log2 n) lower bound for the size of any branching program 
that computes a certain P-function of n variables. A barely nonlinear lower bound 
for the size of any branching program for the majority function was proved using 
Ramsey theory by Pudlak [123. All the other nontrivial known lower bounds deal 
with programs that are restricted in some sense. The most popular restriction is the 
case of bounded width branching programs. The main result of [7, 153 (see 
also [14]) is a superpolynomial lower bound for width-2 branching programs that 
compute majority. Chandra, Furst, and Lipton proved a nonlinear lower bound for 
the length of any bounded width branching program that computes the symmetric 
function of n Boolean variables x1, . . . . x, whose value is 1 iff C xi = n/2 [S]. Their 
lower bound is very close to linear, being B(nW(n)), where E’(n) is the inverse of 
van der Waerden numbers, and it implies a similar lower bound for the majority 
function.. Pudlak [ 123 established an Sz (n log log n/log log log n) lower bound for 
some symmetric functions and Ajtai et al. [l] obtained an Q(n log n/log log n) 
lower bound for some other symmetric functions. 

Very recently, this lower bound has been improved in [2] to Q (n log n). Our 
methods (developed independently of both [ 1,2]) enable us to establish a lower 
bound of Sz (n log n/log w) on the length of input oblivious branching programs of 
width w for many symmetric functions, including all threshold functions Tk, for 
n6 < k < n - nd, and including the function C xi = n/2 considered in [S]. Since any 
branching program can be made input oblivious by increasing its length by a factor 
of its width, this implies an Q(n log n/w *log w) lower bound on the length of 
arbitrary (i.e., not necessarily input oblivious) branching programs of width w for 
these functions. ([2] gives an additional lower bound on the size, but only a 
matching (and for some values of w slightly weaker) lower bound on the length of 
branching programs of unbounded width). In particular for branching programs of 
bounded width we get a lower bound of Sz (n log n) for the previously mentioned 
symmetric functions. We note that Barrington’s recent surprising result [3] asserts 
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that the class of functions computable on branching programs of width 5 and 
polynomial length coincides with the class of functions that have log-depth 
polynomial size Boolean circuits, i.e., nonuniform NC’. It seems difficult to obtain 
any nonrivial lower bounds for any function in this class that contains, of course all 
symmetric functions. 

All the previously known results supply no nontrivial lower bound for the length 
of programs whose width is, say, a*. Since the logarithm of the width of the 
program corresponds to the space of the computation this corresponds to space 
0 (log n) and linear time, which is, of course, not so impressive. As mentioned in 
[6] it is desirable to have explicit P-functions whose branching programs have 
nonlinear length even when the width is greater than nofl! Here we obtain non- 
linear lower bounds for the length of input oblivious R-way branching programs for 
several NC’-functions of n bits, even when the width is much greater than no(‘). 

Our lower bounds follow by proving that the sequence of labels of the levels in 
any input oblivious R-way branching program of the considered width has a mean- 
der-type property (if it computes correctly the function in question). 

Our first example is the well-known set equality function SE(n, m). Its input is a 
sequence of 2n numbers, x,, . . . . x,, y,, . . . . y,, each having m bits, where 
log log n < in < + log n, i.e., each xi and yi is in the range (0, 1, . . . . 2” - 1). The 
function is 1 if and only if for each i, 1 d i< n, there is some j, 1 <j< n, such that 
xi=yj and vice versa, i.e., iff the two sets X= {x,, . . . . x,} and Y= {y,, . . . . yn} 
coincide (without counting multiplicities). 

One can easily check that a RAM with 2” registers can compute this function in 
time O(n) (by writing each number xi in the register whose address is xi), whereas a 
RAM with no(‘) registers can solve it in time 0 (n log n) (via sorting). Q (n log n) 
lower bounds for a RAM with n’(i) registers and for algebraic computation trees 
(for the case m in) appear in [9] and [4], respectively. To the best of our 
knowledge no lower bound exists for the (realistic) case m <n. Here we obtain 
lower bounds for m G n on R-way input oblivious branching programs. 

THEOREM 4.1. Suppose log log n d m < i log n, 1 C$ s < f log n, and R = 2”. Then 
any R-way input oblivious branching program of width 2*“/” computing SE(n, m) has 
length Q (n es). This bound is sharp; i.e., for all n, m, s in this range there is an R-way 
input oblivious branching program of width 2*“/” and length 0 (n . s) computing 
SE (n, m). 

ProoJ The upper bound is staightforward (partition (0, . . . . R - 1 } into s + 1 
intervals and check separately for each interval which elements of it occur in the 
input). To prove the lower bound we argue as follows. Let % be the length of an 
input oblivious R-way branching program B computing SE (n, m), of width 
w < 2*“‘“. Let M be a sequence of length A over { 1,2, . . . . 2n) whose ith element is j 
if the ith level vertices of B are labeled Xjv and is n +j if they are labeled yj. We 
claim that for any S c { 1, 2, . . . . n) and Tc {n + 1, . . . . 2n} with (SI = 1 Tj = 2”-‘, 
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there are O(s) links between S and Tin M. This, together with Theorem 1.1 implies 
that fi = 8(n -s) (for s(n) < f log n we have 2”-’ <n/2”‘“)). 

Fix sets S, T as above. Consider inputs I, = (zi, . . . . .z2,,) E SE(n, m), where zI = 0 
for all l$Su T and A = {zi: ins} = {zj:j~ T}, where A is a set of cardinality at 
most 1 Sl = 2m-’ of elements from (1, . . . . 2” - 11. Let L be the set of links between 
S and T in M. A standard “cut and paste” argument (= “crossing sequence” 
argument) implies that for any two inputs Z, and I,, = (z;, . . . . z;,) with A #A’ 
there is a link 1 in L, such that the computation path in B for la differs from that of 
I,. on that level of the branching program B that corresponds to the last element of 
the link. This is because otherwise B would also accept an amalgamated input 
I”= (21, . ..) Z,,) $ SE(n, m) given by Zi = zi for i < n and Ti = z; for i > n. There are 
C:L,’ ( 2m; ‘) 2 22mP 2 different choices for A and thus wlLl > 22m-2. Since w < 2*“‘” 
this implies that 1 L) = C!(s). 1 

Our second example is the sequence equality function Q(n). Its input is a 
sequence of 2n numbers x1, . . . . x,, y,, . . . . y,, each being 0, 1, or 2. The value of the 
function is 1 if and only if the sequence obtained from x,, . . . . x, by omitting all 
occurrences of 2 coincides with the one obtained in the same manner from 
yI, y,, . . . . y,. We show that for any 1~ s < + log n, if the width of an input oblivious 
3-way branching program computing Q(n) is at most 2”/** then its length is S2(n . s). 
Thus the length is superlinear whenever the width is 2O(“). This is, in a sense, best 
possible since obviously any Boolean function of n bits can be computed by an 
input oblivious branching program of length n and width 2”. 

THEOREM 4.2. Any (3-way) input oblivious branching program of width 2”‘2h(n’ 
computing Q(n) has length l2(n *h(n)). In particular, if the width is 2”‘“’ then the 
length is superlinear. 

Proof: The proof is similar to the previous one. Let B be an input oblivious 
3-way branching program for Q(n) of length m and width w < 2”‘*‘. Let M be a 
sequence of length m over { 1,2, . . . . 2n) whose ith element is j if the ith level vertices 
of B are labeled xi and is n +j if they are labeled yj. Set s = h/2 and suppose 
SG { 1, . ..) n} and Tc {n+ 1, . . . . 2n) satisfy 1 S 1 = 1 TI = 2n/2”. By Theorem 1.1 it is 
sufficient to show that there are in M at least s links between S and T. To bound 
the number 1 of links between S and Tone considers inputs I, = (z,, . . . . z2”), where 
zi = 2 for i 4 S u T and A is a binary sequence of length 1 S 1 which coincides with 
the two sequences (zi)iss and (z~)~, *. The standard crossing sequence argument 
implies that w’ > 2”’ = 2*“12’, i.e., I > (2n/2”)(2h/n) = 2’+ ’ > s. 

Finally we consider lower bounds for some symmetric functions. 

THEOREM 4.3. Let Tk= Tk(xl, . . . . x,) be the Boolean function of n variables 
whose value is 1 if and only if C xi > k. Fix any constant f > 6 > 0. Then any input 
oblivious branching program of width w that computes Tk for some k with n’< k < 
n -n’ has length S2(6n log n/log w). 
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Proof: The proof is similar to the previous two ones. Let 6i be the length of an 
input oblivious branching program B of width w that computes T,. Let M be the 
sequence of length fi over { 1,2, . . . . nj whose ith element is j if the ith level vertices 
of B are labeled xj, Let S and T be two fixed disjoint subsets of { 1,2, . . . . n}, of car- 
dinality ns each. Fix a subset V of cardinality k-d, VE (1, . . . . n}\(Su T). For 
each i, 0 6 i < n’, define an input Z, = (z, , . . . . z,,) E Tk as follows: z, = 1 for each 
I E V, z, = 1 for the first i members of S and for the first n’ - i members of T, and 
z, = 0 in any other case. Let L be the set of links between S and Tin M. A standard 
crossing sequence argument implies that for any two distinct inputs Ii and 
rj = (2; ) . . . . z:) with, say, i < j there is a link I in L, such that the computation path 
in B for Zi differs from that of Z, on that level of the branching program B that 
corresponds to the last element of the link. This is because otherwise B would also 
accept an amalgamated input ?= (5,) . . . . Z,)#T,givenbyZ,=z,(=z;)forl#SuT, 
Z,= z, for 1~ S and 5, = z; for 1~ T. We thus conclude that wlL’ 2 n’, i.e., 
1 L 1 > 6 log n/log w. We can now apply Theorem 1.1 with s = 6 log n/log w (note 
that n/2” 3 n/n* > nb = 1 Sl) to conclude that 6t = Q(6n log n/log w), as needed. 1 

Analogous results for other symmetric functions can be proved similarly. In par- 
ticular, we get an Q(n log n/log w) bound for the functionf (considered in [S]) of n 
Boolean variables xi, . . . . x, whose value is 1 if C xi = n/2. It is not too difficult to 
show that this is sharp. Indeed, for, say w = @(log n) one can compute f in length 
O(n log n/log log n) by computing C xi modulo each prime p satisfying p < 10 . log n 
and by using the Chinese remainder theorem. Similarly, the above bound for this 
function can be shown to be sharp for all log n < MJ 6 n. We do not know if is sharp 
for fixed w (and suspect it is not). 

Remark 4.4. Input oblivious R-way branching programs arise in a natural way 
if one analyses the pebbling of arbitrary computation graphs for a function. Let 
f(Xl, x2, ..., x,) be a function with arguments and value in (0, 1, . . . . R - 1). A com- 
putation graph G for f (x1, . . . . x,) is defined as follows. G is a directed, acyclic graph 
with n special vertices, called sources, labelled xi, . . . . x,, which have no ingoing 
edges, and a special vertex, called sink, labelled f, which has no outgoing edges. 
Each non source vertex is labelled by a function of the values in its immediate 
predecessors. For every given values for xi, x2, . . . . x, in (0, 1, . . . . R - 1 } the graph 
computes a value for each of its non-source vertices by applying the function with 
which it is labelled to the values of its immediate predecessors. In particular, this 
process assigns a value to the sink f: We assume that all intermediate results that 
are computed on nodes of G are from (0, 1, ..,, R - 1 }. We say that G computes f if 
for every admissible values for xi, . . . . x, the computation on G assigns the value 
f(x i, . . . . x,) to the sink f: 

If one pebbles the graph G one is only allowed to place a pebble on a node o if all 
immediate predecessors of G are currently occupied by pebbles. It is easy to see that 
any pebbling of G with p pebbles in T steps defines an input oblivious R-way 
branching program for f of width RP and length T (the RP vertices on each level of 
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the R-way branching program correspond to the RP possible values on those p 
nodes that are currently occupied by pebbles, an input variable xi is queried in the 
branching program if a pebble is placed on a source node of G that is labeled by 
xi). Thus our preceding lower bounds on the length of input oblivious R-way 
branching programs of width < RP yield lower bounds on the number T of steps 
that are required to pebble with p pebbles arbitrary computation graphs for the 
same function. For example it follows from Theorem 4.2 that any pebbling of a 
computation graph for the sequence equality function Q(n) with o(n) pebbles 
requires superlinear time. 
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